E-Cadherin Is Transcriptionally Activated via Suppression of ZEB1 Transcriptional Repressor by Small RNA-Mediated Gene Silencing
نویسندگان
چکیده
RNA activation has been reported to be induced by small interfering RNAs (siRNAs) that act on the promoters of several genes containing E-cadherin. In this study, we present an alternative mechanism of E-cadherin activation in human PC-3 cells by siRNAs previously reported to possess perfect-complementary sequences to E-cadherin promoter. We found that activation of E-cadherin can be also induced via suppression of ZEB1, which is a transcriptional repressor of E-cadherin, by seed-dependent silencing mechanism of these siRNAs. The functional seed-complementary sites of the siRNAs were found in the coding region in addition to the 3' untranslated region of ZEB1 mRNA. Promoter analyses indicated that E-boxes, which are ZEB1-binding sites, in the upstream promoter region are indispensable for E-cadherin transcription by the siRNAs. Thus, the results caution against ignoring siRNA seed-dependent silencing effects in genome-wide transcriptional regulation. In addition, members of miR-302/372/373/520 family, which have the same seed sequences with one of the siRNAs containing perfect-complementarity to E-cadherin promoter, are also found to activate E-cadherin transcription. Thus, E-cadherin could be upregulated by the suppression of ZEB1 transcriptional repressor by miRNAs in vivo.
منابع مشابه
TLE1 inhibits anoikis and promotes tumorigenicity in human lung cancer cells through ZEB1-mediated E-cadherin repression
The Transducin-like enhancer of split 1 (TLE1) corepressor protein is overexpressed in human lung tumors and is a putative lung-specific oncogene. However, the molecular mechanism underlying its oncogenic function remains to be delineated. Here, we report an important role of TLE1 in promoting lung tumorigenesis by a mechanism involving induction of anoikis resistance. Using the human lung aden...
متن کاملProteasome inhibitor-resistant cells cause EMT-induction via suppression of E-cadherin by miR-200 and ZEB1.
Downregulation of E-cadherin (gene: CDH1) plays an important role in epithelial-mesenchymal transition (EMT), which is critical for normal development and disease states. As a result of long-term treatment of endometrial carcinoma Ishikawa cells with epoxomicin (EXM), the cells exhibited the phenotype for EXM-resistance (Ish/EXM cells). Moreover, CDH1 mRNA and its protein were suppressed and EM...
متن کاملSilencing of rhomboid domain containing 1 to inhibit the metastasis of human breast cancer cells in vitro
Objective(s): A growing body of evidence indicates that rhomboid domain containing 1 (RHBDD1) plays an important role in a variety of physiological and pathological processes, including tumorigenesis. We aimed to determine the function of RHBDD1 in breast cancer cells. Materials and Methods: In this study, we used the Oncomine™ database to determine the expression patterns of RHBDD1 in normal a...
متن کاملNAC1 Regulates Somatic Cell Reprogramming by Controlling Zeb1 and E-cadherin Expression
Reprogramming somatic cells to induced pluripotent stem cells (iPSCs) is a long and inefficient process. A thorough understanding of the molecular mechanisms underlying reprogramming is paramount for efficient generation and safe application of iPSCs in medicine. While intensive efforts have been devoted to identifying reprogramming facilitators and barriers, a full repertoire of such factors, ...
متن کاملHedgehog signaling, epithelial-to-mesenchymal transition and miRNA (review).
SHH, IHH, and DHH are lipid-modified secreted proteins binding to Patched receptors, and CDON, BOC or GAS1 co-receptors. In the absence of Hedgehog signaling, GLI1 is transcriptionally repressed, GLI2 is phosphorylated by GSK3 and CK1 for the FBXW11 (betaTRCP2)-mediated degradation, and GLI3 is processed to a cleaved repressor. In the presence of Hedgehog signaling, Smoothened is relieved from ...
متن کامل